- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Doyle, Abigail G. (3)
-
Wang, Jason Y. (3)
-
Shields, Benjamin J. (2)
-
Del Valle, David (1)
-
DiSomma, Stacey (1)
-
Doyle, Abigail G (1)
-
Fan, Flora (1)
-
Furman, Ariel (1)
-
Golden, Dung L. (1)
-
Gomes, Leticia Adao (1)
-
Gosselin, Francis (1)
-
Hao, Bo (1)
-
Kariofillis, Stavros K. (1)
-
Lavin, Mimi (1)
-
Li, Jun (1)
-
Lopez, Steven A (1)
-
Mack, Kyle A. (1)
-
Melnikov, Sergey (1)
-
Min, Daniel S. (1)
-
O'Connor, Thomas J (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Romer, Natalie P.; Min, Daniel S.; Wang, Jason Y.; Walroth, Richard C.; Mack, Kyle A.; Sirois, Lauren E.; Gosselin, Francis; Zell, Daniel; Doyle, Abigail G.; Sigman, Matthew S. (, ACS Catalysis)
-
Wang, Jason Y.; Stevens, Jason M.; Kariofillis, Stavros K.; Tom, Mai-Jan; Golden, Dung L.; Li, Jun; Tabora, Jose E.; Parasram, Marvin; Shields, Benjamin J.; Primer, David N.; et al (, Nature)
-
Żurański, Andrzej M.; Wang, Jason Y.; Shields, Benjamin J.; Doyle, Abigail G. (, Reaction Chemistry & Engineering)This perspective describes Auto-QChem, an automatic, high-throughput and end-to-end DFT calculation workflow that computes chemical descriptors for organic molecules. Tailored toward users without extensive programming experience, Auto-QChem has facilitated more than 38 000 DFT calculations for 17 000 molecules as of January 2022. Starting from string representations of molecules, Auto-QChem automatically (a) generates conformational ensembles, (b) submits and manages DFT calculations on a high-performance computing (HPC) cluster, (c) extracts production-ready features that are suitable for statistical analysis and machine learning model development, and (d) stores resulting calculations in a cloud-hosted and web-accessible database. We describe in detail the design and implementation of Auto-QChem, as well as its current functionalities. We also review three case studies where Auto-QChem was applied to our recent efforts in combining data science approaches in organic chemistry methodology development: (a) the design of a diverse and unbiased aryl bromide substrate scope for a Ni/photoredox catalyzed alkylation reaction, (b) mechanistic studies on the effect of bioxazoline (BiOx) and biimidazoline (BiIm) ligands on enantioselectivity in a Ni/photoredox catalyzed cross-electrophile coupling of epoxides and aryl iodides, (c) the development of a reaction condition optimization framework using Bayesian optimization. In addition, we discuss limitations and future directions of Auto-QChem and similar automated DFT calculation systems.more » « less
An official website of the United States government
